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We prove the convergence of the thermodynamic functions of a free boson gas 
for a d-dimensional (d = 3, 4 . . . .  ) van Hove sequence of convex regions. The 
thermodynamic functions behave singularly at a critical density Pc which is 
independent of the geometrical details of the sequence. We are led to define a 
second critical density O,,, depending on the geometrical details of the sequence. 
For densities between Pc and Pm none of the single particle states is macroscopi- 
cally occupied. We derive a sufficient condition on the sequence such that 
Pm ~ Pc" 
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1. INTRODUCTION AND S U M M A R Y  

In  this p a p e r  we invest igate the behav io r  in the t h e r m o d y n a m i c  l imit  of a 
free boson  gas conf ined  in a region of d -d imens iona l  Euc l idean  space 
( d  = 3, 4 , . . .  ) by  a con ta iner  with ha rd  walls. Singulari t ies  in the the rmo-  

d y n a m i c  funct ions  occur  at  the wel l -known crit ical  dens i ty  Pc; to discuss 
macroscop ic  occupa t ion  of s ingle-par t ic le  levels we are  led to define a 

second  cri t ical  dens i ty  Pm which is not  necessar i ly  equal  to Pc- This is 
d iscussed in a wider  context  in van  den  Berg, Lewis, a n d  Pulb, (0 which 
general izes the work  of  Lewis and  Pulb, (2) van  den  Berg and  Lewis, (3'4) and  
L a n d a u  and  Wi lde / s )  

In  the second pa r t  of this p a p e r  we der ive the equa t ion  of s tate for  
convex conta iners  with Dir ichle t  b o u n d a r y  condi t ions .  W e  cons ider  a 

sequence of convex regions B I C B  2 C  . . .  C B  L C  . . -  with vo lume V L 
and  surface a rea  SL.  W e  prove  that  in the van  Hove  l imit  in which V L ~ oe 
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and S L / V L ~ O  the equation of state in the grand canonical ensemble 
converges to the well-known one (p. 214 in Ref. 7). 

It was pointed out in Refs. 3 and 4 that there exist various types of 
condensation into low-lying single-particle states depending on the relative 
behavior of the bottom part of the spectrum with respect to Vr -1 as 
V r ~  ~ .  Unfortunately that behavior is not known for general convex 
domains, so we restrict ourselves to the case of a rectangular parallelepiped 
with sides L 1 ) L  2 >/ L 3 >t ' ' '  >/ L d ,  where the spectrum of - A / 2  is 
known exactly. This is the case described by Bratteli and Robinson in Ref. 
6. They claim in Theorem 5.2.30 of Ref. 6 that the density of the conden- 
sate in the ground state is p - Pc provided that O > Oc and (L z . . .  L a ) / L  1 

m as the thermodynamic limit is taken. This is false, as can be seen by a 
counterexample: take d = 3 and take L~ = L 2 = e c, L 3 = L [so that (L2L3) 
/ L  z ~ oe as L ~  oo]; then we will prove that the density of the ground state 
is zero in the limit L -~  m for all densities between Pc and Pc + 1/~r. (Their 
error occurs on p. 68 :1  - z2exp[ - fl%(AL) ] is not necessarily positive for 
z L < exp[fl%(A)]. This is also used in their proof of Theorem 5.2.32 
concerning the Gibbs grand canonical state, which is incorrect as it 
stands.) Our main result is the following: For a sequence of parallelepipeds 
such that (L 2 . . .  L d ) / L  a converges to A and log L 2 / ( L  3 . . .  La) converges 
to B as L d ~ oe, macroscopic occupation of single-particle states occurs if 
and only if A is strictly positive and p is greater than the second critical 
density Om given by Om= Oc + Blur .  Moreover if 0 is greater than 0m and A 
is infinite the ground state alone is macroscopically occupied with density 
P - Pro" If p is greater than O~ and A is finite and positive then there is an 
infinite set of single-particle states with positive densities Ol /> 02 >/03 
/> �9 �9 �9 such that ~ i ~  ~Oi = O - Pro. We have shown elsewhere (4) that gener- 
alized condensation occurs whenever p is greater than Pc; we show here 
that macroscopic occupation of single-particle states is only possible if 0 is 
greater than Pro" This clarifies a remark by Ziff, Uhlenbeck, and Kac (p. 
245 in Ref. 7) concerning the absence of large fluctuations and off-diagonal 
long-range order in a two-dimensional film with thickness L3: if we 
approximate this system by taking a sequence of three-dimensional paral- 
lelepipeds in which we take L 1 and L 2 to infinity first then Om is infinite and 
none of the single-particle states will become macroscopically occupied, so 
that the large fluctuations will not appear. 

In the f inn section we consider again a general sequence of convex 
regions. We prove that for a wide class of sequences (and O greater than 0c) 
condensation into the ground state alone occurs with density 0 - Pc. This 
class is much larger than the one which obeys Fisher's uniform regularity 
condition (a) but smaller than the one which obeys Fisher's asymptotic 
regularity condition (8) which coincides with the van Hove condition (see 
Ref. 9). 
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2. THE THERMODYNAMIC FUNCTIONS 

Let B 1 c B 2 c B 3 c �9 �9 �9 B L c �9 �9 �9 be a nested sequence of convex 
regions in d-dimensional Euclidean space (d = 3, 4 , . . .  ) with volume V 1 
< V2< " ' "  Vc <  " ' "  and surface a r e a S l < S z <  " ' "  < S L <  " ' "  (see 
Theorem 12.6 of Ref. 15). We denote by E ~ <  E~ < E3 L < . . .  the 
spectrum of the single-particle Hamiltonian H L = - A / 2  with Dirichlet 
boundary conditions on 3B L. In the grand canonical ensemble for nonin- 
teracting bosons in the region B L the mean occupation number (n~) L of 
single-particle level k is given by 

<n >L = -  (L)I (1)  

where r/~ = E ~ -  E~ and ~(L) is determined by the condition that the 
mean number ( N ) c  of bosons is given by 

oo 

(n~>L= (N)L (2) 
k=l  

The thermodynamic functions in the grand canonical ensemble can be 
expressed in terms of the spectrum of H L and ~(L). For instance the 
pressure p/~ is given by 

1 ~.~ log[l_~(L)e-n~] (3) 
PL = Vc ~ = l  

The thermodynamic limit in the sense of van Hove (9) is the limit in which 
VL increases without bound while Sol Vc becomes arbitrarily small and the 
mean density P = (N)L/VL is kept fixed. Our main result is the following 
theorem. 

Theorem 1. The thermodynamic limit limL_~oo~(L ) exists for all 
values of p. For  p < &. it is the unique root of 

O - (4) 
,,= 1 (2~rn) d/2 

while for p > pc we have limL_+~(L ) = 1. The critical density 

& =  ~,, 1 
n=l (27rH) d/2 (5) 

In order to prove this result we need to solve the equation 

1 k [~(L)]~ e-~? (6) 
P"~'-- ~ L  n=l  k=l  

This can be done using estimates on the single-particle partition function 
which we state in the following lemma. 
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L e m m a  1. 

k e-m~< 
k = l  

and for t > 0 and B L convex 

k~--~l e - ' ~  -- VL 
(2~rt) a/2 

For t > 0 and OB L regular (in particular, B L convex) 

VL 

(2~rt) a/2 
(7) 

e a/2S L 
< (8) 

2- (27rt) (a- 1)/2 

Ray(10) has proved inequality (7) and Angelescu and Nenciu (pp. 25 and 26 
of Ref. 14) have proved (8). 

L e m m a  2. 

,rr2d2S2 L 
E L ~< - -  (9) 

8v~ 

Proof. Let r L denote the radius of the largest sphere inside the 
region; then (see Theorem 12 of Ref. 11) 

VL (10) 
r L > S-- Z 

So the largest d-dimensional cube in the region has sides greater than 
d -L /2 .2 rz .  We obtain (9) by comparison. �9 

Proof of  Theorem 1. 
using (7): 

= ~g" 1 1 Pc = (2qrn) d/2 

L n 
[((L)e e' ] 

<-E n=l " "(2vrn) a/2 

and by Lemma 2 we have 

For p/> Pc we obtain a lower bound on ~(L) 

~ L r OC 
- -  < P = ~ - - [  I~(L)eE ' ]  E e- 'E~ 

n = l  k = l  

~(L)>I e -er  1 - E  L>/ 1 

(11) 

~d~S~ 
8 ~  

(12) 

Since ((L)~< 1 we established l i m c _ ~ ( L ) =  1 because Sc/VL-->O as 
L ~ oo. For O < 0c we obtain similarly 

~(L) > ~ 1 (13) 
8 v  2 
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I (L)I n 

n= 1 (2qrn) d/2 

O0 

,, = 1 (2Trn) a/~ 

for d = 3, 4 . . . . .  Hence 

Let T(L)  be the greatest integer less or equal than (VL /SL)  2. Using (8) we 
have the estimate 

T(L) oo 
p =  

. = 1 (2ern) d/: n = 1 = 1 

E [~(L)] n 1 ~/~s~ 
. = 1 (2~rn) a/2 2 V L �9 (2~rn) (d- 0/2 

T(L)  ~ 1 e d/2S L 

n=T(L)+I (2~n) a/2 n~--I 2" (2~rn)(d-l)/2VL 

2SL( VL) (14) 
V L 1 + 1og-~L 

2 " (2qr)d/2sL ( VL ) (15) 
~( L ) < ~ + Vr 1 + log 

and both the right-hand sides of (13) and (15) converge to ~ as L ~  oo. [] 

Theorem 2. limL__,=pL exists and is given by 

n �9 (2qrn) d/2 ' P 4~ Pc 

lim P p L  = 
L--~ r 1 

I n �9 (2~rn) d/2 ' P > Pc 

(16) 

Proof. 

IP  - pLI  < t .=]  n . (2~n)  ~/2 n.(2~n)~/2 

n = ]  f /  k = l  

+ [((L)I" 1 e - . e ?  1 .= ,  n ~ E I + I I + I I I  (17) 
k =  1 ( 2 ~ n )  d / 2  

Term I becomes small by Theorem 1. Term III becomes small by (8) and 
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for II  we have 

A(L) ElCeA(L)E( 
I I 4  

n= 1 (2~n)  a/2 

<. EL(ep~ + P) 

n = A ( L ) + I  n VL k = l  

(18) 

where A (L) is the greatest integer less or equal than ( E L ) -  1. [] 
Notice that the other thermodynamic functions like the entropy den- 

sity, etc., converge in the infinite volume limit in a similar way. 

3. THE OCCUPATION NUMBERS 

From Theorem 1 it is clear that for p < p c l i m L ~ ( n k ) L / V  L = 0 for all 
k since l imL_,~((L)= ~ < 1. For O > Pc we restrict ourselves to the case 
where the convex region is a rectangular parallelepiped with sides L 1 
) L 2 . . .  >1 L a. The spectrum of - -A /2  with Dirichlet (zero) boundary 
conditions is then given by 

~r2 ~ k 2 - 1  
M = T - (19) 

i = l  

where k denotes herein the multi-index (k 1 . . . .  , kd) and k i = 1,2, . . .  for 
i = l , . . . , d .  

T h e o r e m  3. Let the infinite volume limit ( L - - ) ~ )  be such that the 
mean density P is kept fixed and 

1. L 1 >1 L 2 . . .  >1 La--)  

L 2 �9 . . L a 
2. lim - A 

LI---~ vo . . . . .  Ld--> ~ } L 1 

log L 2 
3. lim - B 

L I ~  . . . . .  L a ~  } L3 . .  �9 Ld 

then for O <Om ==- Pc + B / w  none of the single-particle states are macro- 
scopically occupied. For O > P,, we have 

- 1  

' I ,t+ 1 Ok = lim <nk, ,l . . . . .  -- I>L= T t ' 

and 

P(1 . . . . .  1) ~ lim 1 (21) t,->~ ~ (n1'1 . . . . .  1)L~--- p -  p~ if A = 

and 

Pk -~ lira 1 ( n k )  L = 0 
L--> ce 

(22) 
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f o r k ~ ( k  1,1 . . . .  , 1) i f 0 < A  < o o  and f o r k v  ~ ( 1 , . . . ,  1) i f A = o o  and 
for all k if A = 0. C is the positive solution of 

o0 
E [(  k 2 .  1)rr2/2 + C ] - ' = A ( O - O m )  (23) 

k=l  

The following Lemma is the key to the proof of Theorem 3. 

Lemma 3. For z ~ [0, 1] 

lim ~ 1 . z - k 
Z n 

L-->oO {k: ks~(kl ,k 2 ,1,1 . . . . .  1) VL e '?  -- Z n= 1 (2r d/2 
(24) 

Proof. Let us define for n > 0 

then 

f F/q/.2 ] 
a(L,n)  = k exp - ~--~(k  2 -  1) 

k=2 
(25) 

nrr2 '~ (26) a(L,n)  <<. L exp - 
(2,a-rt) 1 / 2 k 2 ] 

hence 

a(L,n)  

[ ] (3n 2)  27, a(L,n)  >> L 2 exp 
(2vrn) 1/2 2L 2 

(2rm)l/2 ~ < T + L 2 ] 

a ( L , n )  L [ ( n ./2 ) 
(2vrn),/2 -<< 6 T + 2 (29) 

We have the expansion 

~,, z(e  "? - z ) - '  
VL {k : k ~ ( k  1 ,k 2,1 . . . . .  l)} 

_ 1 z" a(L  i ,n) + ~. a (L  i ,n )a (L j ,n )  + 
VL ,~=1 = l<~i<j<~d 

(i,j) ~(1,2) 

a(L i ,n )a (L j ,n )a (Lz ,n  ) + . . .  + I-[ a(Li ,n)  
i=1 

Z 
l <~i<j<l<-<.d 

(30) 
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By (26) 

I X zn•a(Li, n) <x I i~=3 s Li VL n=, i=3 K - (2~rn) T ~ e x p  -- mr--~eLi 2 dn 

d 
< (d - 2) 1] (L~) --1 

i=3 
(31) 

l'~n~=lZn E a ( L i , n ) a ( L j , r t )  VL l<i<j<d 
(i,j)~ (1,2) 

1 ~ exp - - -  
- K l~ L, 2 

(i,j)+(l,2) 

) 1 E ZiZj - -  "{- 21ogLj (32)  
< "~L l<-<i<j<d \ g2 

(i,j) 4= (1,2) 

The right-hand sides of (31) and (32) go to zero as Ld-~ oo. Each of the 
terms in expansion (29) with 3, 4 . . . . .  d -  1 a's are easily shown to be 
bounded from above by 

! k  l 
Ld n = 1 (2'n'n) 3/2 

for L a > 1. Moreover by (26) and (27) 

d k zn E z" II a(Li ,n) < (33) 
VL n = 1 i= 1 n = 1 (2~rn) a/2 

1 ~ z" II a(Li,n) > 1 ~] z"exp 3dn~2 Zi 
"~L n=  1 i = l  --~L n = l  \ 2 L  2 i=1 (2q.fn)i/2 2 

. =1 (2~rn) a/2 exp 2La 2 - P-[L. =l 

•  2L~ /i= --~rn~.~(d)2 a-i 

,, = 1 (2~'n) a/2 exp 2L~ VL VL 

• log[ 1 -- exp( -- - -  
2 L  2 j=3 cj V L 
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where c 1 . . . . .  Cd_ 1 are positive numbers  independent  of L 1 . . . . .  L d. So 
the lower bound  increases to the upper  bound  as L e ~  ~ .  �9 

Proof of Theorem 3. Since L a ~ ~ we have SL/V c ~ 0 so that by 
Theorem 1 ~ ( L ~ l  for 0 >/Pc. By L e m m a  3 it follows that  for  any e 1 > 0 
there exists an L a large enough such that 

1 ~ [~(L)]n[ 1 -t- a(L l , n  ) "t- a(L2,n ) 
"-VLLn=I 

+a(L,,n)a(L 2 ,n ) ] - (p -pc )  < e l  (34) 

Moreover  f rom (26) . . . . .  (29) one has 

1 
VL~ VL 

1 ~ [l~(L)],a(L,,n)a(L2,n) + 2__~L log 1 -- ~(L)exp - - -  
n=l L 2 

< -V-[ n=l (2r exp - L---~- 

L z (mr__~2)a(L,,n) L, ] 
+ (2~n), /2 exp - L~ (2~rn) t/z 

1 ( L~+L~) (36) L L2+ r, 

For L a large enough we have for any e I > 0 (34) replaced by 

K + a(L,,.)] n~l 

Om m Pc 

2 log L 2 

X l o g [ 1 - ~ ( L ) e x p ( - L - g ~ ) ] - ( O - p c )  <2E ,  

We consider two cases: 
(1) Pc < P < Pro" Choose e 1 = (Pm -- 0)/4-  It follows that 

(37) 

Pm - Pc l~ l - ~(L)exp( r )1 (Pm + P -- 2pc) 
210gL2 -- < P -- Pc + 2Cl = 2 

(38) 
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so that for L 2 large enough 

( 1 . L[(p,,+o-apc)/(o,o-oc 0 (39) ~< e x p \ -  

Using this upper bound and (25), (26) we obtain 

! ~ [~(L)]n[l "l" a(Ll ,n)]  
g L n = l  

1 . L(O~+t)-2oc)/(2pm-2Oc ) (40) 2 . L(2Om+o-zoc)/(om-p, ) -t- ~LL <'K 
which goes to zero as L---> m. Combining this result with (37) we have 
proved that for Pc < O < 0m 

~(L)~  1 - L2 20-~176176176 (41) 

and all the occupation numbers Ok converge to zero. 
(2) O > 0m" Instead of deriving an upper bound on ((L) we derive a 

lower bound on ~(L) using (37) and (26). For L large enough 

1 ~(L) L1 ] 
vL + 

>1 ~ [ ~ ( L ) ] " [ l + a ( L l , n ) ] > ~ O - O ~ - ( O m - O ~ ) - 3 q  (42) 
n=l 

If we choose q = (0 - 0,~)/6 we have for L large enough 

1 - li(L) <~ 4 (0  - Ore) 2 V 2  (P - Ore) VL 

<~ ~ [ (0 -- Ore) -2 + (0 -- Om)- ' ] (43) 

Combining (37) and (43) we get for 0 > Om and L-+ oo 

1 ~, Ef(L)]"[1 +a(Ll ,n ) ] - - -~p-pm (44) 
VL n=l 

If A -- m then (26) implies 

1 ~ E~ (L)I.a(L, n)~< 1 ~ L, ( mrat L~ 
,= ,  , ~ , = ,  (2~rn),/2 exp - L~ ] ~< ~ - - > 0  (45) 
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so that 

1 (46) 
~(L)--I  (0 - Ore) VL 

which proves (21). 
If 0 < A < oo (20) follows from (44) and the following inequality: 

~ ~r2 L1 exp( 1 n ) -  ~ z exp (k 2 -  1) - z  < �9 

(47) 

f o r L  1/> l a n d z E [ 0 , 1 ] .  
If A = 0 one has from (44) and (27) that for L large enough 

"~L n=l (2q.fn)l/2 2 exp 2L~ 

n <<'-~L [~(L)] a(L,,n) < 2p 
n=l 

(48) 

So that 

VL , = '  (2~rn),/--------- ~ 1 -- 2L---- T < 40 (49) 

and therefore 

~(L) < e x p [ - ( 1  + 60VL/L1) -~] (50) 

1 ~(L) 1 (1 6pVL) 2 (51) 
V L 1 - ~ ( L )  < '~L +L~- -1  

goes to zero. Using this result we obtain with (26) and (27) 

, (L )2 
~(L)--I 2(0 Om) 2 ~ (52) 

which completes the proof of Theorem 3 in the case p > O~, A = 0. [] 
If we want to discuss the fluctuations in the grand canonical ensemble 

it is convenient to calculate the grand canonical average of e - zN /VL  in the 
limit L ~ oo. For the parallelepiped we have the following: 
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Theorem 4. 

lim (e- zu / vL > L 
L- - )  or 

e -  ZO, 

e-ZO.[1  + 2(p--pm)] -1, 

= e -zorn (2z -- 'i'r 2 -I- 2 C )  1/2 

(2C - 572) 1/2 

s i n h ( 2 C -  7r2) 1/2 

sinh(2z - ~r 2 + 2 C )  1/2 ' 

P < P m ,  P > P m ,  A = O  

P > P m ,  A = m  

P>Pm' O<A < 

where z > 0 and C, A, and Pm are as in Theorem 3. 

(53) 

We will not prove this theorem but if we compare the given expression 
with the corresponding ones in Refs. 3 and 4 we notice that the Pc in Refs. 3 
and 4 has been replaced by Ore" 

, A SUFFICIENT CONDITION ON CONDENSATION INTO THE 
GROUND STATE ALONE 

T h e o r e m  5. If the sequence of convex regions B~ c B 2 C �9 �9 �9 c B L 
c - - .  is such that 

VL 
a s L ~ m  then f o r p > p c  

(54) 

Pl -= lim 1 ~ ( L )  
C-,~ V L 1 = - ~ L )  - 0 - Oc (55) 

and 

  --25m '--0, 

Proof.  By the classical isoperimetric inequality [see (1.1) in Ref. 13] 

SL >1 dTrl /2[F(d/2  + 1 ) ] - ' / d v ~  - ' / a  (57) 
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we have with (54) 

so that 

vL( - e ( ) - - ,  oo (58) 

1 ~(L)  1 1 < 1 .  _ _  < --)0 (59) 
Vc en? - ~(L) VL e ~ - 1 VL(E ~ - E#) 

which proves (56). In order to prove (55) we have the following lower 
bound: 

~ e n? - K e ~ -~L eel----1 Vc EI L 
• 
VL k=2 ~(L) = - 1 ~=1 

~s~ (  ~ ) -  ~ E ~ '  (60) > /0c -  1 + log-s--[ 

where we have used (11) and an inequality similar to (14). For E (  we use 
the d-dimensional Rayleigh-Faber-Krahn inequality (see Theorem 3.4 of 
Ref. 13) 

1 .2 (61)  1, [ + l)l 

so that the lower bound (60) converges to Pc for d = 3 , 4 , . . . .  (The first 
positive zero of the Bessel function Jn(x) is denoted byjn.) To complete the 
proof of (55) we derive an upper bound using (7): 

1 ~ ~(L) 1 ~ 1 < 1 ~ ~_~_2 
~ L  k=2 e n? - ~(L) < ~L k=2 e "?---~- 1 ~ n=l  e-n(E~-ElC) 

1 (e~e,  ~ e - ~ e ? +  1 < Pc + K E - 1) - -  e ~(Ef-e)  
n=l  k=2 VL n=A(L)+I 

= oc + 1 + H (62)  

where A (L) is the greatest integer less or equal than (E#)-1. Furthermore 

eA(C)e'~'2(E~)l/2<<.2e(ElC)l/2, d = 3  

I <-< A(L)E e n E ~ " - - / ' / E L  < e A(L)E'L �9 ELL(1- logES), d = 4  
n = 1 (2~rn) a/2 

e A(L)e(. E1 c ~] n -3/2,  d ) 5 
n=l  

(63) 
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Since A(L)E~ < 1 
Moreover by Lemma 1 and Lemma 2 

1 ~ exp[A(L)(E~- E~)] 
I I =  ~ c  k=2 1 - e x p ( E ~ -  E~)  

exp[A(L)E( ~] 
<" 1 Z ~ E ~ ) ~ = 2  exp(- 

e,+ek (E~) a/: e,+e ~ [ '  ~< (2~)d/2- E~-E(  ~ < "( ~d2~cl/2"16 ] I SL a ' (E~-EO 

and E ( ~ 0  by Lemma 2 we have I ~ 0  as L ~ m .  

-1  

(64) 

The right-hand side of (64) goes to zero by condition (54). �9 
Since E ~ -  E ( ~ 0  it follows that condition (54) is stronger than van 

Hove's condition (9) or Fisher's asymptotic regularity condition. (8) For 
many convex regions B (e.g., all parallelepipeds) 

3~r 2 
E ~ -  E~ > / T  "(D8)-2  (65) 

(where D~ is the diameter of B). If we combine (54) and (65) we obtain 

Sz. . (D L )2/<__> 0 (66) 
VL 

which is weaker than Fisher's uniform regularity condition if d = 3, 4 , . . . .  
Unfortunately only for Neumann boundary conditions an inequality simi- 
lar to (65) has been proven (Theorem 3.24 of Ref. 13 or 12). 

Corollary. If B L is the dilation of a convex region B 1 then for O > Pc 
the ground state is macroscopically occupied with density 0 - 0r in the limit 
L--) oc. 
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